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Double domain structure of the pair contact process with diffusion
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We investigate the domain structure of the pair contact process with diffusion (PCPD). PCPD is a stochastic
reaction-diffusion model which evolves by the competition of two binary reactions, 2A —3A and 24 —0. In
addition, each particle diffuses isotropically, which leads to the bidirectional coupling between solitary par-
ticles and pairs. The spreading domain formed from localized activities in vacuum consists of two regions: The
coupled region of size R, where pairs and solitary particles coexist and the uncoupled region of size Ry where
only solitary particles exist, respectively. The size of the whole domain R is given as R=R,,+Ry. At criticality,
R, and Ry scale as R,~ "% and Ry~ 1""%0 with Z;;>Z,. We estimate Z,=1.61(1) and Z;=1.768(8). Hence
the correction to the scaling of R, Q=R/R), slowly decays extremely, which makes it practically impossible to
identify the asymptotic scaling behavior of R. The double domain structure is another reason for the extremely
slow approach to the asymptotic scaling regime of PCPD.
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Nonequilibrium absorbing phase transitions (APT’s) from
fluctuating active states into absorbing states in which the
system is trapped forever have been a field of growing inter-
est during past decades [1-3]. Recent theoretical and numeri-
cal studies show that APT’s exhibit universality and it can be
classified according to conservation laws, dimensionality of
systems and symmetries of absorbing states [1-3]. However
only a few universality classes have been identified so far.
Directed percolation (DP) [2-5] and parity conserving (PC)
[6-12] class are well studied classes among others. DP class
includes systems with no special attributes except the time
reversal symmetry, so that most systems studied so far be-
long to this class.

As a research direction to search for further unknown uni-
versality classes, coupled systems have been studied recently
[8,13-25]. A coupled system is a multi-species system in
which each species is coupled to the others in certain ways
such as bidirectional and unidirectional coupling in linear or
quadratic ways. However the coupled systems do not always
exhibit new critical behavior. For bidirectionally coupled
systems, the critical behavior depends on the manner of the
coupling. For instance, quadratically coupled DP systems
still belong to DP class despite their complex behavior [13].
However, linearly coupled systems belonging to DP or PC
class exhibit mean-field or nontrivial critical behavior
[8,14-17]. Linearly and unidirectionally coupled systems ex-
hibit new critical behavior at multicritical point where all
subsystems are critical [18-25].

Among single species systems, pair contact process with
diffusion (PCPD) can be regarded as a two species system.
PCPD has been extensively studied during past years due to
its nontrivial critical behavior (see [26] for review). How-
ever, in spite of extensive theoretical and numerical studies,
the critical behavior is not clearly uncovered yet. PCPD is a
stochastic reaction-diffusion model, which evolves by the
competition of two processes, fission (24 — 3A) and annihi-
lation (2A — 0). In addition, each particle performs isotropic
diffusion. Without diffusion, the model is so-called pair con-
tact process (PCP) belonging to DP class [27]. Since the
reactions involve pairs, diffusing solitary particles are not
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engaged in the binary reactions. However when two solitary
particles form a pair, the reactions take place. On the other
hand, solitary particles are created from pairs by diffusion.
Hence, PCPD can be regarded as a bidirectionally coupled
two species system in which the order of the coupling is
linear in the direction from pairs to solitary particles and
quadratic in the opposite direction. This observation leads to
the cyclically coupled DP and pair annihilation which exhib-
its the similar type of critical behavior to that of PCPD [28].

In this paper, we investigate the domain structure of
PCPD. When a spreading domain is formed from localized
initial activities, the quadratic coupling from solitary par-
ticles to pairs allows the pair-free region in which only soli-
tary particles are present. We call the pair-free region so-
called uncoupled region. On the other hand, the linear
coupling from pairs to solitary particles results in the so-
called coupled region in which pairs and solitary particles
coexist. The pair-free region encloses the coupled region as
shown in Fig. 1. Hence the spreading domain is divided into
two regions, coupled and uncoupled region. This kind of
double domain structure was found in unidirectionally
coupled two level hierarchies [24,25]. As shown in previous
studies on unidirectionally coupled systems [21-25], the
measurements of critical exponents are very difficult due to
long-time drift of the exponents. The one reason of the drift
is the generic feature of the unidirectional coupling [21,22],
the other is the double domain structure [24,25]. In measur-
ing critical exponents, one can overcome the latter effect by
measuring quantities in each region separately.

FIG. 1. Double domain structure of PCPD. The region with size
R, is the coupled region in which pairs (black) and solitary particles
(gray) coexist. The region with size Ry, is the uncoupled region in
which only solitary particles exist.
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As in unidirectionally coupled systems, it is expected that
the double domain structure of PCPD also makes it difficult
to identify the critical spreading behavior precisely. The aim
of this paper is to investigate the effect of the double domain
structure on the critical spreading of PCPD and to estimate
critical exponents more precisely. We consider the PCPD of
Ref. [29]. In this model, a randomly selected particle at-
tempts to hop to one of the nearest neighbor sites with an
equal probability. If the target site is empty, the attempt is
accepted. However if the target site is occupied, (i) two par-
ticles annihilate with probability p or (ii) the hopping attempt
is rejected and the pair (the chosen particle and one at the
target site) tries to create a particle at the randomly chosen
nearest neighbor site of the pair. When the target site is oc-
cupied, the branching attempt is rejected. The critical point
of this model is p,=0.133 519(3) in one dimension [29].

PCPD has three sectors in configuration spaces according
to the existence of pairs (P) and solitary particles (S). The
one is the configurations in which both pairs and solitary
particles are present (PS-ensemble). We call configurations
with at least one pair (two solitary particles) P-ensemble
(S-ensemble). In P-ensemble (S-ensemble), solitary particles
(pairs) may be present or not. The P-ensemble is the reactive
subspace of Ref. [30]. A conventional ensemble includes
configurations with at least two particles which can be either
two solitary particles or one pair. We call the conventional
ensemble All-ensemble. Since solitary particles are effec-
tively linearly coupled to pairs, the existence of pairs implies
the existence of solitary particles. Hence PS-ensemble
should coincide with P-ensemble asymptotically. However,
solitary particles transform into pairs by collisions, the cou-
pling in this direction is quadratic. Hence the existence of
solitary particles does not always guarantee the presence of
pairs due to the long life time of solitary particles. So
S-ensemble coincide with All-ensemble. As a result, there are
two distinct ensembles in PCPD.

We define the size of each domain as follows (see Fig. 1).
The size of the whole domain at time ¢ [R(#)] is defined as
the distance between the leftmost and the rightmost particle.
When both pairs and solitary particles exist simultaneously,
we can define the size of the coupled region [R(7)] and the
size of the uncoupled region [R(¢)]. Since solitary particles
are linearly coupled to pairs, we define the size of the
coupled region [R(#)] as the spreading distance of pairs (R,,)
defined as the distance between the leftmost and the right-
most pair. Then, Ry(?) is given as R;=R-R,. Hence, we
have three different lengths, R, R, and R in PCPD. To take
into account the three length scales at the same time, one
should use PS-ensemble in which only two lengths, R, and
Ry are the fundamental length scales of PCPD due to R
=R,+Ry.

At p.=0.133 519, we perform defect Monte Carlo simu-
lations with a pair on a one-dimensional empty lattice. We
run simulations up to =107 time steps using 3.6 X 10° inde-
pendent runs. We measure the squared sizes, R?, R;, and R%]
for surviving PS-ensemble. The PCPD has two absorbing
states, vacuum and states with one diffusing solitary particle.
Hence, we stop the simulations when the total number of
particles N is less than 2. At the criticality, the squared sizes
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FIG. 2. (Color online) Scaling plots of various sizes. (a) The
scaling plot of R?> (lower curve) and R%] (upper curve) with Z
=1.663 and Z;;=1.768. (b) The scaling plot of Rﬁ with Z,=1.61.

scale as R>~r*%, R2~1*% and R ~*%v. Figure 2 shows
the scaling plots of the squared sizes, R2/7*%:. We obtain the
best scaling plot with Z=1.663(5), Z,=1.61(1), and Z;,
=1.768(8), respectively. The errors of our estimates should
be larger due to the error of p.. Within the numerical errors at
the criticality, our estimate of Z agrees with the previous
studies [26], especially Z=1.70(5) [9]. Since Z;>Z,, the
total spreading distance R(=R,+R;) should scale as R
~1t"%p_and Ry, plays the role of the correction to the scaling
as in unidirectionally coupled systems. Hence, we conclude
7Z=7,=1.61(1) which is the smallest value among the esti-
mates of previous studies [26]. For reference, we also mea-
sure R? using All-ensemble. The difference of All-ensemble
from PS-ensemble or P-ensemble is that All-ensemble in-
cludes configurations without pairs. Since solitary particles
spread diffusively, it is expected that R averaged over
All-ensemble scales differently from that of PS-ensemble.
From the scaling plot of R?/t*%, we estimate Z=1.676(3) for
All-ensemble which is larger than that of PS-ensemble (not
shown). The slow spreading of the whole domain in
All-ensemble results from the diffusive motions of solitary
particles in configuration without pairs.

Since R scales as R=R,(1+R/R,), the correction to the
R is Q=Ry/R, which decays as O~t? with ¢=(Z,
~2,)1Z,Z,,. To see how the correction decays slowly in time,
we plot Q in Fig. 3. When Q <1, the correction is negligible.
However, as shown in the inset, Q is still comparable to one
even at t=107. We obtain the best scaling plot of Qt? with
$=0.054(4). As Q decays with very small ¢, it is practically
impossible to reach the asymptotic scaling regime of R
~R, As a result, one should take the double domain struc-
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FIG. 3. Scaling plot of the ratio Q=R/R,,. The main plot shows
Q1t? with ¢=0.054. The inset shows the double logarithmic plot of
().

ture into account for the more precise measurement of the
dynamic exponent Z.

In addition to the sizes, we also measure the number of
pairs (N,) and of solitary particles (N,) averaged over all
samples, and the survival probability of PS-ensemble (P,,)
and All-ensemble (P,;). As solitary particles are linearly
coupled to pairs, N; is proportional to N,. At criticality, N,
scales as N, ~t". Figure 4 shows the scaling plot N,/17. We
obtain the best scaling plot with 7=0.275(5). The inset show
the ratio of Ny/N,, which converges to one as expected.

P,(t) and P, (1) decay in power law as P[,X~t“sz;sand P
~% at the criticality. Figure 5 shows the scaling plots of

tha; and the double logarithmic plots of P, and P,;. With
3,s=8,=0.130(3), we obtain the best scaling plots. The sys-
tem escapes from the nonreactive sector in which only dif-
fusing solitary particles are present via pair annihilations of
solitary particles. As a naive argument for the equality of
5,’7S=5;, the escaping probability from non-reactive sector
within time 7 may scale as 7*? which is the death probabil-
ity of two diffusing particles undergoing the reaction S+S
— 0 within 7. Hence, the contribution of non-reactive sector
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FIG. 4. Scaling plot of N,. The main plot shows N,/t” with 7
=0.275. The inset shows the semilogarithmic plot of the ratio
N,/N,.
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FIG. 5. (Color online) Scaling plot of P,s and P,;. The main
plot shows the scaling plot of prt‘szgs (lower curve) and Pa”[éfl (up-
per curve) with &) =8,=0.13. We add a constant ~0.4 to the scaling
plot of P,; for a better presentation. The inset shows the double
logarithmic plots.

to P,; is negligible due to the fast escaping probability,
which leads to the same scaling behavior of P, as P,.

In summary, we investigate the domain structure of
PCPD, and numerically confirm the existence of the double
domain structure. This double domain structure comes from
the linear and quadratic bidirectional couplings. The struc-
ture intrinsically makes the serious correction to the scaling
of the critical spreading of a domain.

Starting with a pair, a domain grows and spreads in
vacuum via fission (24 — 3A) and spontaneous annihilation
of pairs (24 —0) in PCPD. In addition to the binary reac-
tions, each particle diffuses isotropically, which leads to the
bidirectional coupling between solitary particles and pairs.
The coupling from pairs to solitary particles is linear, while
the opposite coupling is quadratic. The difference of the cou-
pling ways results in the double domain structure of the
whole domain, the coupled and the uncoupled region respec-
tively. As a result, the size of the whole domain (R) is given
as the sum of the size of the coupled region (R,) and of the
uncoupled region (R;;). We numerically find that R, and R,
scale as R,~1"% and Ry~ 1'%V with Z;;>Z at criticality.
Hence, R should asymptotically scale as R~ ' with Z=Z,
and Ry, plays the role of the correction to the scaling. How-
ever, the direct measurement of R leads to the underestimate
of the asymptotic value of Z because the correction Q
=Ry/R,, decays with very small exponent. Since it is practi-
cally impossible to reach the asymptotic scaling region of
R~1t"%, it is important to take the domain structure into
account in simulations for more precise estimate of the dy-
namic exponent Z of PCPD.

We classify particle configurations into four ensembles,
which are finally reduced to two distinct ensembles,
P-ensemble and All-ensemble respectively. All-ensemble in-
cludes configurations without pairs, while P-ensemble does
not. The survival probabilities of two ensembles decay with
the same exponent. However, the whole domain appears to
spread more slowly in Al/l-ensemble than in P-ensemble due
to the diffusive motions of solitary particles in configurations
without pairs. Hence, in addition to the domain structure, the
diffusive motions of solitary particles in Al/l-ensemble raise
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another correction to the scaling of the total spreading dis-
tance R which does not appear in P-ensemble.

As the linear-quadratic bidirectional coupling is the com-
mon feature of various PCPD studied so far, the double do-
main structure should appear in other PCPD variants. Among
PCPD variants, we investigate the domain structure of the
bosonic PCPD with soft constraint of Ref. [9]. For this
model, we also confirm the existence of the double domain
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structure and the critical spreading behavior similar to that of
PCPD studied in this paper. Hence, the double domain struc-
ture is a common feature of PCPD variants.
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